Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps
نویسنده
چکیده
This paper investigates border-collision bifurcations in piecewise-linear planar maps that are non-invertible in one region. Maps of this type arise as normal forms for grazing–sliding bifurcations in three-dimensional Filippovtype systems. A possible strategy is presented for classifying fixed and period-2 points, that are involved in such bifurcations. This allows one to determine a region of parameter space where a bifurcation leading to chaos might occur. The main part of the paper contains a careful proof of the onset of attractors which are robust to small parameter changes. An intricate structure is revealed of the limiting set on which the attractor lives, consisting of distinct continuous line segments. As parameters are varied, the attractor on the segments can change from being chaotic to periodic. Also, the mechanism by which the number of line segments can change is uncovered. Mathematics Subject Classification: 37G15, 37G05, 37G35
منابع مشابه
Border-Collision bifurcations in One-Dimensional Discontinuous Maps
We present a classification of border-collision bifurcations in one-dimensional discontinuous maps depending on the parameters of the piecewise linear approximation in the neighborhood of the point of discontinuity. For each range of parameter values we derive the condition of existence and stability of various periodic orbits and of chaos. This knowledge will help in understanding the bifurcat...
متن کاملBifurcations of SNAP-Back Repellers with Application to Border-Collision bifurcations
The bifurcation theory of snap-back repellers in hybrid dynamical systems is developed. Infinite sequences of bifurcations are shown to arise due to the creation of snap-back repellers in non-invertible maps. These are analogous to the cascades of bifurcations known to occur close to homoclinic tangencies for diffeomorphisms. The theoretical results are illustrated with reference to bifurcation...
متن کاملBorder collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit.
In recent years, the study of chaotic and complex phenomena in electronic circuits has been widely developed due to the increasing number of applications. In these studies, associated with the use of chaotic sequences, chaos is required to be robust (not occurring only in a set of zero measure and persistent to perturbations of the system). These properties are not easy to be proved, and numeri...
متن کاملCenter bifurcation for Two-Dimensional Border-Collision Normal Form
In this work we study some properties associated with the bordercollision bifurcations in a two-dimensional piecewise linear map in canonical form, related to the case in which a xed point of one of the linear maps has complex eigenvalues and undergoes a center bifurcation when its eigenvalues pass through the unit circle. This problem is faced in several applied piecewise smooth models, such ...
متن کاملBifurcation phenomena in two-dimensional piecewise smooth discontinuous maps.
In recent years the theory of border collision bifurcations has been developed for piecewise smooth maps that are continuous across the border and has been successfully applied to explain nonsmooth bifurcation phenomena in physical systems. However, there exist a large number of switching dynamical systems that have been found to yield two-dimensional piecewise smooth maps that are discontinuou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004